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Abstract 

Current research develops a vision-based 

surveillance system concept suitable for airport ramp 

area operations. The surveillance approach consists 

of computer vision algorithms operating on video 

streams from surveillance cameras for detecting 

aircraft in images and localizing them. Rough order 

of magnitude estimates of the number of cameras 

required to cover the ramp area at a sample airport 

(Dallas/Fort Worth International Airport) were 

obtained. Two sets of algorithms with complimentary 

features were developed to detect an aircraft in a 

given image. The first set of algorithms was based on 

background subtraction, a popular computer-vision 

approach, for change detection in video streams. The 

second set was a supervised-learning approach based 

on a model learned from a database of images. The 

Histogram of Oriented Gradient (HOG) feature was 

used for classification with Support Vector Machines 

(SVMs). Then, an algorithm for matching aircraft in 

two different images was developed based on an 

approximate aircraft localization algorithm. Finally, 

stereo-vision algorithms were used for 3D-

localization of the aircraft. A 1:400 scale model of a 

realistic airport consisting of a terminal building, jet 

bridges, ground marking, aircraft, and ground 

vehicles was used for testing the various algorithms. 

Aircraft detection was demonstrated using static and 

moving aircraft images, single and multiple aircraft 

images, and occluded aircraft images. Preliminary 

testing using the in-house setup demonstrated 3D 

localization accuracy of up to 30 ft. 

Introduction 

Ramp areas in airports are densely occupied 

by aircraft, ground vehicles, and ground crew. At 

most airports ramp areas are not covered by 

surveillance systems such as RADAR and Airport 

Surface Detection Equipment - Model X (ASDE-X). 

Even when surveillance systems such as Automatic 

Dependent Surveillance -Broadcast (ADS-B) are 

available they require the aircraft avionics to be 

powered on, whereas some aircraft in the ramp area 

may have the avionics system turned off. Another 

drawback of surveillance technologies in ramp area is 

that technologies, such as RADAR and Global 

Positioning System (GPS) based ADS-B, suffer from 

multi-path errors in the ramp area thus compromising 

the accuracy [1].  

The proposed vision-based surveillance 

system overcomes the above obstacles as it does not 

require any aircraft equipage and participation. It is  a 

ground-based passive surveillance system. Therefore, 

it does not suffer from multi-path errors. 

Vision-based surveillance systems have 

found significant applications in monitoring the 

security of public places as well as private 

businesses. However, in these applications they 

typically aid the humans by combining the feeds 

from multiple cameras into a single view for the 

monitoring personnel. In other applications, vision 

based approaches have been used for road 

surveillance [2]. Refs. [3] and [4] specifically deal 

with vision-based surveillance approaches for airport 

surface traffic. However, the functional, algorithmic, 

and performance details of these concepts 

specifically applied to the densely populated ramp 

area, are not available at the moment for comparison. 

Surveillance in ramp area has multiple 

benefits: 

 Surveillance information can enable safety 

monitoring systems (such as Refs. [5], [6]) for 

ramp area operations. The Flight Safety 



Foundation estimates that 27,000 accidents 

occur on airport ramps worldwide each year, 

and 243,000 people are injured, or roughly 

one injury for every 111 departures [7]. 

Industry experts put the airlines' cost due to 

ramp area accidents at $4 billion to $5 billion 

internationally each year [8]. 

 Real-time surveillance updates could aid in 

better planning gate release and ramp spot 

release/sequence operations by planners such 

as the Spot and Runway Departure Advisor 

(SARDA) [9] by providing real-time updates 

on the pushback and taxi status of the aircraft. 

SARDA was developed by the Safe and 

Efficient Surface Operations (SESO) group at 

NASA Ames Research Center. 

Figure 1 shows the functional architecture of 

the proposed concept. The primary inputs come in the 

form of video streams from surveillance cameras. 

Auxiliary inputs are the schedule data, and other 

surveillance information, if any. The first set of 

algorithmic modules processing the video data 

consists of the ‘Aircraft and Ground Vehicle 

Detection’ modules (purple colored blocks in Figure 

1). The purpose of these modules is to detect the 

presence of aircraft or ground-vehicles in a given 

image frame.  The second module is the aircraft 

localization module whose task is to estimate the 3D 

location of the aircraft in an inertial frame of 

reference. This is done in two sub-modules: (i) 

Aircraft Matching, and (ii) 3D-Localization (orange 

colored blocks in Figure 1). The Aircraft Matching 

module matches the aircraft identified in image 

frames obtained from different cameras. The 3D-

Localization module uses stereo-vision algorithms to 

estimate the 3D location using two images of the 

same aircraft obtained from two different cameras.  

 

 

Figure 1. Functional Architecture of the Proposed Concept 

The last module is the Data Fusion Module 

(gray colored blocks in Figure 1) which deals with 

tracking aircraft over multiple cameras. This involves 

data-association and state estimation algorithms. The 

blue colored blocks indicate data sources that could 

aid the overall system. The overall output from the 



surveillance system consists of aircraft ID; position 

coordinates of the aircraft    ; gate where the aircraft 

is parked; speed   and heading   if the aircraft is 

moving. Advanced vision-based algorithms are also 

capable of generating aircraft orientation information. 

Apart from the surveillance mode, the 

proposed system can be used in a post-processing 

mode to conduct surveillance video data analysis. In 

this mode the proposed system can identify the paths 

taken by aircraft in the ramp area; model the statistics 

of time taken by aircraft to move from gate to ramp 

spot; identify special events of interest such as 

simultaneous push back from adjacent gates. 

Camera Requirements 

The following are design parameters of a 

camera-based surveillance system:  

 Wave length of operation (e.g., Visible, 

Infrared, which is suitable for night-time and 

low-visibility operations)  

 Number of cameras  

 Location & orientation of cameras 

 Focal length ( ) of the cameras 

 Imaging sensor size ( ) of the cameras 

 Resolution of the imaging sensor 

 Type of lens (e.g., Wide Angle, Fish eye, 

Panoramic) 

 Degrees of freedom (i.e., Pan, Tilt, and/or 

Zoom). 

A pin-hole camera model (Figure 2) is used 

to compute the approximate number of cameras 

required to provide complete coverage for a sample 

airport, Dallas/Ft. Worth International Airport 

(DFW).  

 

Figure 2. Pinhole Camera Model 

The following is the basic equation that 

describes the perspective transformation resulting 

from a camera. An object of length,  , at a distance, 

 , from the camera is shrunk to a length,  , which is 

dependent on the focal length of the camera,  .  

   
  

 
 (1) 

The field-of-view of a camera is an important 

parameter that determines the geographical area 

captured by the camera. It depends on the focal 

length,  , and the size of the imaging sensor,  , and is 

typically  characterized by the angle,  . 

The total number of cameras required to 

cover the complete ramp area depends on the area of 

the ramp represented by         , and the 

maximum area captured by a single camera 

       . It can be approximated by the following 

equations: 

           
        

       
 (2) 

         =       
  (3) 

where   is the length to width ratio of the imaging 

sensor; and      is the maximum object length that 

could be captured by a camera at a distance  .  

            (4) 

It should be noted that the above equation is 

an approximation. It assumes no occlusions and 

assumes the feasibility of placing the cameras at 

specified distance,  . The actual number of cameras 

could be higher. However, the above equation 

provides valuable insight into the camera 

requirements as explained by the following relations: 

          
 

  
         (5) 

          
 

        
 (6) 

Typical sensor sizes could range from a 

minimum of 4mm in width to a maximum of up to 

36mm. The focal length of cameras can vary from as 

low as 2.5mm to as high as 1m. Corresponding fields 

of view could vary between 50 degrees to 

150 degrees. Figure 3-Figure 4 illustrate the number 

of camera requirements for cameras with different 

FOVs.  
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Figure 3. Required Numbers of Cameras with 

50deg FOV Cameras 

 

Figure 4. Required Numbers of Cameras with 

100deg FOV Cameras 

The three plots within each figure indicate 

the number of cameras required for single-camera 

coverage, double-camera coverage, and triple-camera 

coverage. Single-camera coverage refers to a scenario 

where each point is only viewed by a single camera. 

For purposes such as 3D-localization it is desired that 

the same aircraft be imaged by at least two cameras 

(double-camera coverage). Multiple cameras looking 

at the same aircraft from different angles also 

increases the robustness of aircraft detection. 

The hyperbolic nature of the plots indicates 

the inverse proportionality with the square of the 

distance    from the camera. It can also been seen by 

comparing Figure 3 and Figure 4 that doubling the 

FOV more than halves the number of cameras. 

From these figures it can be concluded that 

for a 50 degree field-of-view camera placed 1000 ft 

from the area of interest could require as many as 50 

cameras for double-camera coverage for a ramp area 

whose size is same as that of the DFW ramp area. It 

should be noted that DFW has relatively large ramp 

areas. Smaller airports could require less than half 

this number. It should also be noted that the above 

analysis does not take into account camera placement 

restrictions and occlusions. It is intended to be an 

approximate analysis to get a rough order of 

magnitude estimate of the number of cameras 

required for the proposed surveillance system. 

Aircraft Detection Module 

The role of this module is to sample each 

video frame and evaluate if an aircraft is present in 

the frame. Two different algorithms (i) Background-

Subtraction Algorithm and (ii) Supervised-Learning 

Algorithm were developed for this purpose. The 

following sub-sections present the approach and the 

results obtained using the two algorithmic 

approaches. 

Background-Subtraction Algorithm 

The Background-Subtraction approach relies 

on the following premises: (i) The camera view is 

fixed. (ii) The scope of view consists of two 

components: (a) static terminal component, and (b) 

dynamic moving components. (iii) The dynamic 

moving components consist of aircraft, ground 

vehicles, and ground crew. (iv) Approximate sizes of 

the aircraft, ground vehicles, and ground crew are 

known. 

 Figure 5 shows a block diagram of this 

algorithmic approach. The inputs to this algorithm 

are an image of the background, and a sample image 

that may or may not contain an aircraft. The first step 

involves differencing and thresholding the difference 

to identify pixels whose values deviate from the 

background (see Figure 6). The second step involves 

clustering these pixels using K-Means algorithm (see 

Figure 7). The third step involves identifying the 

3sigma ellipsoids associated with each cluster (see 
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Figure 8). The last step involves discarding small and 

low-density clusters, as well as combing nearby 

clusters (see Figure 9). 

 

 

 

Figure 5. Functional Flow Diagram of the Background-Subtraction-Based Approach 

 

Figure 6. Difference Image 

 

Figure 7. K-Means Clustered Image 

 

Figure 8. Image with Cluster 3Sigma Ellipsoids 

 

Figure 9. Final Image with Bounding Box 

Results obtained applying the Background-

Subtraction approach to pictures of a 1:400 scale 

model of an airport are shown in Figure 10-Figure 

19. The results include different aircraft types, 

different orientations, and different locations. Figure 

14-Figure 17 show multiple aircraft detection as well. 

Figure 17 and Figure 18 demonstrate detection 

amidst ground vehicles. It should be noted that the 

ground vehicles were not part of the background. 

One of the challenges of the Background 

Subtraction approach is the ability to deal with 

changing lighting conditions of the background. 

Another challenge emanates from the fact that it may 

not be possible to get a background image without 

any aircraft or ground vehicles in the image. Results 



presented here are based on a rudimentary 

background subtraction algorithm. Several advanced 

versions [10], [11] of Background Subtraction 

algorithms are available in literature that address both 

the above mentioned issues. Background is 

constantly updated in these approaches to 

accommodate the changing lighting conditions as 

well as moving aircraft. These algorithmic features 

will be evaluated in future research with actual 

surveillance video streams. 

 

Figure 10. B747 Front View 

 

Figure 11. A320 Side View 

 

Figure 12. CRJ7 Front View 

 

Figure 13. CRJ7 Side View 

 

Figure 14. Detection of 2 Aircraft (B777 and 

A320) 

 

Figure 15. Detection of 2 Aircraft (B777 and 

A320) 

 

Figure 16. Detection of 3 Aircraft (B777, A320, 

CRJ7)  

 

Figure 17. Two Aircraft (B777 and A320) and 

Ground Vehicles 

 

 



 

Figure 18. B777 Pushback with Ground Vehicles 

 

Figure 19. B777 Arrival at Gate                   

Supervised-Learning Algorithm 

Another set of aircraft detection algorithms 

was built based on Discriminatively Trained 

Deformable Part Models (Refs. [12], [13] ). This 

aircraft detection system does not require any prior 

assumption regarding the aircraft to be detected. 

Instead, it relies on pre-learnt aircraft models to infer 

the existence of the aircraft in the input image. The 

output is a binary variable indicating the presence of 

an aircraft; a bounding box representing the image 

plane location of the aircraft; and a coarse orientation 

angle.  

During the learning stage, we construct the 

aircraft models from a database which contains 

aircraft of different types taken at various view-

points. The Histogram-of-Orientation-Gradient 

(HOG) [14] feature is used for training purposes. The 

HOG feature is robust to scale and illumination 

variations. Figure 20 illustrates the calculation of the 

HOG feature for a single cell with the dimension of 8 

by 8. HOG, as the name suggests, deals with a 

histogram of gradients. The gradients can be 

computed along the   axis,   axis or other directions 

as well. Once the gradients are computed over several 

pixels the information is encapsulated into a 

histogram representation. The histogram 

representation obviates the necessity to exactly 

compute the edges. It instead relies on the overall 

distribution of edge or gradient orientations at pixel 

level. The overall distribution (or histogram) tends be 

more robust to scale and illumination variations. 

 

Figure 20. Computation of the HOG Feature 

During the detection stage, the aircraft 

detection system scans through the image and queries 

the existence of the aircraft via the pre-built classifier 

which utilizes the aircraft model information. Support 

Vector Machine (SVM) framework is used for 

inference in Refs. [12], [13].  

A few snapshots of the results obtained from 

the supervised-learning algorithm are shown in 

Figure 21-Figure 24. These results are for four 

different aircraft types in different views. 

The success of learning-based approaches is 

dependent on the quality and quantity of the training 

data used. However, SVM aided learning approaches 

remain one of the most successful computer-vision 

approach for object detection. Whereas, the generic 

computer-vision problem seeks to identify a wide-

variety of objects from a wide-variety of backgrounds 

the current problem is more focused. In that, it is 

based on a fixed camera location; restricted to 

detection of aircraft; and can also be adapted to 

individual ramp area for improved detection 

efficiency. These issues will be addressed in future 

research. 



 

Figure 21. B747 Front View 

 

Figure 22. B747 Side View 

 

Figure 23. B777 Side View 

 

Figure 24. B737 AND CRJ700 

Aircraft Detection Algorithm Comparison 

The previous two sub-sections described two 

different algorithms for aircraft detection. The 

success of proposed vision-based surveillance system 

is crucially dependent on the success of the aircraft 

detection module. It should be noted that these two 

algorithms have different strengths and weaknesses. 

The background-subtraction approach is simple and 

takes advantage of the continuous video information 

but requires the accurate maintenance of background 

information. The supervised-learning approach 

benefits from the large number of trained aircraft 

examples. Specifically, the HOG feature is robust to 

scale and illumination variations. However, it 

requires a large amount of training data to generate 

accurate results.  

Aircraft Matching Module 

The first step in 3D-localization using stereo-

vision is to match aircraft obtained from different 

cameras. This problem is referred to as ‘Image 

Correspondence’ in computer vision parlance. In the 

context of the current research the problem is defined 

as follows: “Given two images, each containing an 

aircraft bounding box, are these two aircraft the 

same?”. 

An algorithm that is based on approximate 

aircraft localization is used in this research for 

matching aircraft in two different images. An 

approximate location of the aircraft is computed 

based on a single aircraft image. Figure 25 shows the 

Cartesian coordinate system used in this research. It 

should be noted that the   axis matches the optical 

axis of the camera and captures the depth coordinate 

of the aircraft from the camera; the     plane 

matches the image plane; and the   coordinate 

represents the height coordinates of the aircraft with 

respect to the ground. 

 

Figure 25. Cartesian Coordinate System Used for 

Aircraft Localization 

Picture 228: maxDetVal 0.075569 Component:6 Picture 227: maxDetVal -0.51039 Component:3

Picture 101: DetVal -0.01061 Component:5 DetVal -0.14957 Component:3



The approach is based on the following 

premises: (i) All aircraft in the ramp area are on the 

ground, (ii) The lower horizontal edge of the 

bounding box represents points that correspond to the 

lower most parts of the aircraft, i.e., wheels, whose 

inertial frame Y-coordinates are zero            

  , where the subscript    refers to lower mid-point 

(shown as blue dot in Figure 25), the subscripts 1 and 

2 refer to cameras 1 and 2 respectively. 

The premise (ii) is approximate because the 

bounding box in certain views cannot capture the 

bottom most portion of the aircraft. However, this 

approximation is not severe because the vertical 

(height) dimensions of the aircraft are much smaller ( 

< 100 ft, which makes the error much smaller than 

100 ft) compared to the   and   dimensions which 

could be on the order of 1000 ft. 

Using the above two premises the following 

equation was used to solve for the   coordinate of the 

lower horizontal edge of the aircraft bounding box. 

         
    

    
  (7) 

        
              

  
 (8) 

where the symbols       with subscript    refer to 

the coordinates corresponding to the lower mid-point 

of the bounding box,     pixel coordinates of LM 

point; symbols       with subscript   refer to the 

coordinates of the location of the camera,        are 

the coordinates of the image-plane centers,       

refer to focal length per unit pixel width along   and 

  image planes axes, 

     
 

  
       

 

  
 (9) 

where    and    are the imaging sensor pixel 

dimensions. 

The following logic is used to determine if 

the aircraft identified in two different images 

obtained from two different cameras are the same:  

(i) Compute           and           for 

both the bounding boxes 

(ii) Compute the distance   between the two 

lower mid-points as follows: 

 
 

             
             

  
(10) 

(iii) Use the following logic to determine if 

the aircraft are the same or different:  If   is less than 

a pre-defined threshold the two aircraft are 

considered the same, else, different. 

 Figure 26-Figure 35 demonstrate the results 

obtained by applying the above described aircraft 

matching logic. The two columns of figures represent 

images taken using two cameras located at different 

positions. The left column indicates the picture taken 

using the left camera and the right column represents 

the picture taken with the right camera. It can be seen 

from the bounding boxes that the aircraft are detected 

in all the images. Moreover, the aircraft matching 

logic successfully identified the matching aircraft 

pairs and rejected the mismatched ones.



 

Figure 26. Left Camera Image 

 

Figure 27. Matched Right Camera Image 

 

Figure 28. Left Camera Image 

 

Figure 29. Unmatched Right Camera Image 

 

Figure 30. Left Camera Image 

 

Figure 31. Unmatched Right Camera Image 

 

Figure 32. Left Camera Image 

 

Figure 33. Matched Right Camera Image 

 

Figure 34. Left Camera Image 

 

Figure 35. Matched Right Camera Image 

 



Aircraft Localization Module 

The objective of this module is to compute 

the 3D position coordinates         corresponding 

to the centroid of an aircraft in an inertial reference 

frame. 

Inputs are:  

 The pixel coordinates         and         of the 

centroids of two matched aircraft obtained from 

two different cameras. The centroids of the 

bounding boxes are treated as the centroids of the 

aircraft.  

 The locations of the two cameras are 

              and              .  

 The intrinsic parameters of the cameras 

                  and                  . 

 Outputs are 3D position coordinates 

        of the aircraft centroid. 

The following equations are valid for the 

projection of a point         on to the image planes. 

The subscripts   and   refer to Camera 1 and Camera 

2 respectively.  

            
     
     

  (11) 

            
     
     

  (12) 

            
     
     

  (13) 

            
     
     

  (14) 

The above equations can be rearranged into 

the following matrix form: 

 
 
 
 
 
 
    
    
    

   

        

        

        

             
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
                  

                  

                  

                   
 
 
 
 

 

(15) 

Given the intrinsic parameters and locations 

of the cameras, and pixel coordinates of the same 

point in both the images, it is possible to solve the 

above system of linear equations for the 3D location 

of the point        . A single camera only results in 

two equations (say equations 11 & 12, or 13 & 14) in 

three unknowns      and  . Therefore, a unique 

solution cannot be obtained. Having multiple cameras 

creates more constraints (or equations) on the three 

unknowns      and   resulting in a more accurate 

solution. 

Figure 36, Figure 37, and Figure 38 show the 

aircraft localization accuracy along the  ,  , and   

axes respectively. The 3D-position localization 

accuracy is shown in Figure 39. These errors are 

obtained from 16 different aircraft localization tests. 

The x-axis refers to the test number. The errors 

shown here are scaled up 400 times to map the results 

of 1/400 scale model into a real-world setting. It 

should be noted that the maximum errors in these 

figures are less than 30 ft, which is small compared to 

the size of the ramp area and the size of the aircraft. 

The errors in these figures are computed as Actual 

Values - Estimated Values. The biases in the figures 

reflect in part the inability to measure the Actual 

Position of the aircraft in the camera coordinate 

system. This is in turn due to the fact that the origin 

of the coordinate system which is attached to the 

imaging sensor could only be approximately located 

in the cameras used under the current research. The 

biases however can be estimated and rejected through 

a calibration process.  

 

Figure 36. Localization Accuracy along X-Axis 
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Figure 37. Localization Accuracy along Y-Axis 

 

Figure 38. Localization Accuracy along Z-Axis 

 

Figure 39. 3D-Position Localization Accuracy 

 

Summary 

Overall, the paper formulated a vision-based 

surveillance concept for airport ramp area operations. 

Surveillance in the ramp area can improve both 

safety and efficiency of the ramp area operations. The 

paper identified the key algorithmic modules that 

would be necessary for implementing the concept. 

Two algorithms with complimentary features were 

proposed for aircraft detection. An innovative 

approach for matching aircraft from different cameras 

has been identified. Sample versions of the 

algorithms were implemented and demonstrated on a 

realistic 1:400 scale model of the ramp area and 

aircraft. Preliminary results indicate the localization 

accuracy to be around 30ft which is much less than 

the size of the aircraft.  

Challenges 

The performance of the vision-based system 

under night-time and low-visibility conditions poses 

a primary challenge. The current paper does not 

address this issue. An infrared camera is required for 

handling these low-lighting scenarios. Some other 

challenges include high-frequency variations in 

illumination, camera jitter, shadows,  occlusions, and 

the effects of ground-traffic. Another challenge is the 

fusion of the information resulting from the computer 

vision algorithms with other surveillance data. 

Future Work 

A significant portion of our future work 

involves extensive evaluation of the performance of 

the aircraft detection and aircraft localization 

algorithms using actual ramp area surveillance video 

data. Individual algorithmic modules are expected to 

be refined as part of this testing process. Work is also 

required for evaluating the algorithms using data 

from infrared cameras which are suitable for night-

time and low-visibility conditions. Future work also 

involves formulating the data-fusion framework. 
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